

Nanomaterials and Film Systems

Sanjay Mathur

Leibniz Institute for New Materials Saarbrücken Germany

Marie Curie Summer School - Knowledge Based Materials

11 August, 2005

Contents of Talk

Materials

Ceramics: Definition & Evolution

- ✓ Functional Properties
- Materials Synthesis
 - Processing
 - ✓ Top Down *versus* Bottom Up Strategies
 - ✓ Nanocrystalline Ceramics
- Summary

© Leibniz Institute of New materials

Materials: A Diverse World

Ceramics: Knowledge-based (R)Evolution

Ceramics

Origin of the word:

- Greek: keramos
- Significance: clay, brick
- "the one who went through the fire"...

Definition:

 Primarily defined by the *texture and microstructure* of the material: heterogeneous amorphous + crystalline phases

• Modern ceramics are high performance, high purity, inorganic non-metallic materials with well defined microstructure and mainly *covalent* and *ionic* bonds

Ceramics everything that is NOT polymer, metal, or grown

Examples

- Silica, SiO₂
 - \rightarrow main ingredient in glass
- Alumina, Al₂O₃
 - \rightarrow various applications (abrasives, ..., artificial bones)
- Aluminium silicate, Al₂Si₂O₅(OH)₄
 - \rightarrow main ingredient in clay products
- Bio-ceramics
 - Calcium hydroxyapatite, $Ca_5(PO_4)OH$

Implants

Artificial bones

Tooth implants

Classification of Ceramics

Conventional Ceramics

Natural Raw Materials:

• Clay, Kaolin, Quartz, Feldspar, Mica

Biotite: $K_2(Mg,Fe)_3$ AISi₃O₁₀(OH,O,F₂)₂ Advanced Ceramics

- Natural Raw Materials, but: chemically prepared
- Synthetic Raw Materials

Silicate Ceramics

Refractory Materials

Oxides	Non-oxides
Al ₂ O ₃	SiC
ZrO ₂	Si ₃ N ₄
MgAl ₂ O ₄	Graphite
BeO	Borides
ZnO	Silicides

Ceramics: Functional Materials

Advanced Ceramics

Examples: Advanced Ceramics

Ceramics:

... poly(micro/nano)-crystalline materials whose properties are determined, besides chemical composition, by grain boundaries and microstructural defects ...

Careful control of synthesis and processing is important!

Grain Boundaries

A *grain boundary* separates regions of the same crystal structure but of different crystal orientation.

Structure / Formation

Microstructure >>> Property Relationship

gradients in elemental, size and phase distribution

Ceramic Engineering: Synthesis & Processing

Ceramics: Processing

Ceramics: Powder Shape-Forming

Limitations Density variation Die wear/Contamination Cracking Advantages Homogeneous pressure distribution Compaction uniformity Enhanced shape capability

Ceramics: Liquid Shape-Forming

Critical Factors

Slip (slurry) consistency, viscosity, entrapped air, chemical reactions, drain properties, shrinkage, release properties, strength of the cast-shape, etc.

I. Sintering Process

Sinter Temperature < Melting Temperatur (Eutectic T for composites)

Initial stage: \rightarrow 40 – 75 % of theoretical density (TD)

Sintering Process

Grain Boundary Diffusion

II. Sintering Process

 α -Al₂O₃ at the end of the intermediate stage

- Particles don't move any longer
- High coordination of the particles
- Mass transport by volume- and GB-diffusion
- ➢ 3-D network of pores

- \Rightarrow *Particle growth* begins
- \Rightarrow Pore volume decreases
- \Rightarrow Particle shape changes

III. Sintering Process

Sintering: Diffusion Mechanism

- Grain boundary and bulk diffusion (1, 2 and 5) to the neck contribute to densification.
- Evaporation condensation (4) and surface diffusion (3) do not contribute to densification.

(Adapted from: Principles for Ceramic Sience and Engineering: Y. M. Chang, D. Birnie and W. D. Kingery)

Micro-structural Defects

Properties

Thermal Properties

 Coefficient of thermal expansion: α (ceramics) ≤ α (metals) *
 Good heat conductivity

expansion coefficient and thermal conductivity of some materials

Thermal Properties

Optical Properties

Transparency of Ceramics

Opaque

Transparent

Requisites for Transparency:

- Transparency and isotropy of the single grains
- Little contribution of the GBs to diffraction and diffusion
- No pores and voids
 (→ sinter techniques)

Improved Synthesis

LUMICERA by CASIO: Ceramic lenses for digital cameras

- transparency ~ optical glass
- refractive index: $n_d = 2,08 > optical glass (n_d = 1,5-1,85)$
- excellent stability

Electrical Properties

electrical conductivity κ [S/m]

- a measure of the ease with which electrical carriers flow in a material (reciprocal of the resistivity)
- the ability of a material to allow the flow of lectrical current

Conductive Behaviour

Advanced Ceramics: Tuneable Conductivity

Mechanical Properties

Microstructural Defects

Control of chemical composition, particle size, and particle size distribution is required to achieve the optimum properties ...

... (Better) Optimized Synthesis of Matter

Control over ?

Phase Composition

Synthesis of Ceramics

Key Issues:

- Compositional homogeneity
- Phase purity
- Morphology
- Particle size and distribution
- Synthesis temperatures \rightarrow Grain growth

Limitations:

- Elemental Segregation
- Co-existence of metastable or intermediate phases
- Abnormal grain growth
- Marginal control over particle size/ morphology

Ceramics: Synthesis and Processing

Bottom-Up: Atoms und Molecules as building blocks

Chemical Synthesis of Ceramics

Atomic scale mixing

(Nano)Crystalline material at low temperature

Phase purity and selectivity

Pre-defined reaction chemistry and single-step synthesis

Molecule Derived Materials

BaZrO₃ Ceramics

Powders Treated Identically

Cold Isostatic Pressing (14 kN) Sintered: 1400 °C

Density of Pellets

Alkoxide: 93-95 % Non-alkoxide: 65-70 %

Phase Purity and Particle Size Distribution

Nanocrystalline Materials

Nanometer

"A magical point on the length scale, for this is the point where the smallest man-made devices meet the atoms and molecules of the natural world"

Atoms/ Molecules	N	Vanoscale Particles	Condensed Matter
1	125	70,000	$6 \times 10^6 \infty \text{ N}^{\circ} \text{ Atoms}$
Quantum Chemistry	1	? ¹⁰	100 ∞ Diameter(nm) Solid State Physics

Room at the Bottom

What I want to talk about is the problem of manipulating and controlling things on a small scale ...

As soon as I mention this, people tell me about miniaturization, and how far it has progressed today. They tell me about electric motors that are the size of the nail on your small finger. And there is a device on the market, they tell me, by which you can write the Lord's Prayer on the head of a pin. But that's nothing; that's the most primitive, halting step in the direction I intend to discuss. It's a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.....

Prof. Richard Feynman in "There's plenty of room at the bottom", lecture delivered at the annual meeting of the APS, Caltech, 29 December, 1959.

Nanoscale Writing

Nanoscale writing with an AFM (Mirkin et al.)

60 nm As soon as I mention this, people tell me about miniaturization, and how for it has progressed today. They tell me about electric motors that are the size of the noil on your small finger. And there is a device on the market, they tell me, by which you can write the Lord's Prayer on the head of a pin. But that's nothing: that's the most primitive, halting step in the direction I intend to discuss. It is a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1950 that anybody began seriously to move in this direction. 400 nm Richard P. Feynman, 1960

Size as Innovation Motor

√ Small → Negligible light scattering → New optics
 ✓ Quantum size effects → Information technology, Storage media
 √ High surface area → Catalysts, Adsorbents
 √ Large Interfacial area → New composites
 √ Surface modifications → Targeted Drug Delivery

The Nano-family

Macro vs. Nano: The Size Effect

Nanomaterials - no buzz word!

Soot and silicon carbide nanoparticles in tyres reduce abrasion (ca. 50%)

www.nanoproducts.com

TiO₂ and ZnO in sunscreen lotions Enhanced prevention from of UV radiation

www.nucelle.com

Nanometric polymer capsules with incorporated vitamin A - Better absorbance in the skin

www.lorealparis.co.uk

Nano ZnO: UV-Blocker

Nanotechnology on the Market

3-5% Carbon nanotubes in the front bumper increases shape stability and strength

Ties with nano-coatings repel water and greasy food and fluids

www.ahwahneetech.com/technology/carbon_nanotube.htm

Wilson: nanocomposite coatings of tennis balls doubles life time and restricts airflow from escaping the core

www.wilson.com