# **Edward DeMille Campbell** 1863-1925



contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. Despite this handicap, he contributed 77 papers to the scientific literature, the majority of which dealt with a correlation of the chemical constituents with the physical and mechanical properties of steels. This lecture recognizes demonstrated ability in materials science and engineering. Professor Campbell, Honorary Member of ASM International, was born in Detroit, Michigan in 1863, and was educated at the University of Michigan. After serving as a chemist in various iron companies, he became an

University of Michigan.

This annual lecture was inaugurated in 1926

## COMPUTATIONAL MATERIALS SCIENEERING

## G.B. Olson

Northwestern University & QuesTek Innovations LLC Evanston, Illinois

## **2006 Edward DeMille Campbell Memorial Lecture** MS&T'06 Cincinnati, Ohio

October 17, 2006





#### MTL/SRG

A) Cybersteel 2020 (ONR D3D/Grand Challenge)

B) HT Carburizing Steels (DOE-OIT; GM, P&W)

C) Superalloys (DARPA-AIM; AF-MEANS, RMCI, MDT)

D) Bulk Metallic Glasses (DARPA-SAM)

#### GOVERNMENT

#### UNIVERSITY

#### INDUSTRY

| NAWC/AD       | A       | NORTHWESTERN A,B,C,D QUESTEK               | A,B,C,D      |
|---------------|---------|--------------------------------------------|--------------|
| Lee           |         | Olson Isheim Kuehmann Kern                 | Rathbun Wang |
| NRL           | A       | Brinson Jerome Huang Jung                  | Tang Wright  |
| Spanos        |         | Espinosa Liu Jou Misra                     | Tufts        |
| ARL/WMD       | B       | Fine Moran CATERPILLAR                     | A,B          |
| Montgomery    |         | Freeman Voorhees Chen                      | Johnson      |
| AFRL          | C,D     | High Resolution Microanalysis ALLVAC STEEL | A,B          |
| Woodward      | Miracle | Lippard                                    |              |
|               |         | GIT A INLAND STEEL                         | A            |
|               |         | McDowell Bhattacharya                      |              |
|               |         | MICHIGAN A GM                              | В            |
|               |         | Pollock Mishra                             | Sachdev      |
|               |         | CSM A,C FORD                               | B            |
|               |         | Eberhart                                   |              |
|               |         | OHIO STATE A,C BOEING                      | B,D          |
|               |         | Fraser Mills Bowden                        |              |
| LEHIGH        | С       | MIT A,D PRATT & WHITNE                     | Y B,C,D      |
| Harlow        |         | Parks Fowler Schirra                       | a Watson     |
| WISCONSIN-MAD | C,D     | WPI/CHTE B MEDTRONIC                       | С            |
| Perepezko     |         | Apelian Adler                              | Lesser       |
| ПТ            | D       | PURDUE-CALUMET B REFERENCE MET             | ALS C        |
| Nash          |         | Abramowitz Carneiro                        |              |
| VIRGINIA      | D       | KTH (Stockholm) C HOWMET                   | D            |
| Poon          |         | Agren Wolter                               |              |



PROCESSING

STRUCTURE

PROPERTIES



# Hierarchy of Design Models



## M2C Precipitation

M2C carbide precipitation behavior in AF1410 steel vs. tempering time at 510C following 1 hour solution treatment at 830C



# Current sales Ferrium<sup>®</sup> C61

## **Ring and Pinion**



Camshafts





# S53: Nanotechnology Now





# Grain Boundary Embrittlement



J.R. Rice and J.-S. Wang, Mater. Sci. Eng., 1988



# **Charge Density : Fe/Ti[C,N]**



- Strong covalent feature
- Short bonding distance Fe-C: 1.88 Å Fe-N: 1.90 Å (cf) Fe<sub>3</sub>C: 1.94 Å
  Opposite buckling Fe/TiC: 0.07 Å
  - Fe/TiN : 0.07 Å

• Same maximum charge density in the bond Fe-C : 0.12 e/(a.u.)<sup>3</sup> Fe-N : 0.12 e/(a.u.)<sup>3</sup>

(cf) 1 a.u.=0.529 Å

## **Interfacial Quantum Engineering** of Grain Refining Carbonitrides

MX/Fe Work of Separation (J/m<sup>2</sup>)





# Materials Development Cycle



# AIM ARCHITECTURE



# **PrecipiCalc<sup>TM</sup> Timeline**

## Software/Hardware Improvement



\* single IN100 PWA1100 simulation

# **Basic** *PrecipiCalc* Equations (2) — **Particle** Growth

Growth: 
$$\frac{dR}{dt} = \frac{\left(1 + R\sqrt{4\pi N_v \langle R \rangle}\right)}{\left(R\Gamma + s(R) \middle/ \left(M_0 \exp \frac{-Q}{RT}\right)\right)} \left\{\Delta G_m - \frac{2\sigma(R)\overline{V}_m^\beta}{R}\right\}$$
where  $\Delta G_m = \left[\overline{\Delta C_i}\right]^T \left[\frac{\partial^2 \overline{G}^\alpha}{\partial C_i \partial C_j}\right] \left[\Delta C_j^\infty\right] + \left[\overline{C}_m^\beta\right] \bullet \left(\overline{\mu}_m^\alpha\right] - \left[\overline{\mu}_m^\beta\right]$ 

$$\Gamma = \left[\overline{\Delta C_i}\right]^T \left[\frac{\partial^2 \overline{G}^\alpha}{\partial C_i \partial C_j}\right] \left[\overline{D}_{jk}\right]^{-1} \left[\Delta C_k^\beta\right]$$

$$\frac{\text{Thermodynamics}}{\text{Diffusivity}}$$
subcritical + supercritical





# **Impact of DARPA AIM Initiative**

 Material behavior intimately linked and participating in the design process
 4 months to improved capability









Rim hole

Bore



## Minidisk Microstructure Prediction with *PrecipiCalc*



| Minidisk    |                 | Bore       |       | Rim          |      | Attachment   |      |
|-------------|-----------------|------------|-------|--------------|------|--------------|------|
| Comparison  |                 | Exp.       | PpC   | Exp.         | РрС  | Exp.         | PpC  |
| Primary γ'  | Fraction<br>(%) | 24<br>25.2 | 22.6  | 23.5<br>25   | 23.5 | 23.1<br>25.7 | 23.3 |
|             | Size (µm)       | 1.28       | 1.29  | 1.23<br>1.27 | 1.32 | 1.18<br>1.2  | 1.31 |
| Secondary γ | Fraction<br>(%) | 32.4       | 35    |              | 34   |              | 34.6 |
|             | Size (nm)       | 109        |       | 132          | 120  | 103          |      |
|             |                 | 129        | 107.9 | 157          | 135  | 114          | 84.2 |
|             |                 |            |       |              | 146  |              |      |
| Tertiary γ' | Size (nm)       | 18<br>20.8 | 21.5  | 19.7<br>21.8 | 21.4 | 21.4         | 20.7 |



Yield Strength, ksi

## ACCELERATING TECHNOLOGY TRANSITION Bridging the Valley of Death for Materials and Processes in Defense Systems

Committee on Accelerating Technology Transition. National Materials Advisory Board Board on Manufacturing and Engineering Design Division on Engineering and Physical Sciences

#### NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

|                                    | Tool        | Company                                                            | Function                                                         |
|------------------------------------|-------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| Design<br>integration              | iSIGHT      | Engineous Software (Salt Lake<br>City, Utah)                       | Multidisciplinary design<br>optimization (MDO)                   |
|                                    | CMD         | QuesTek Innovations LLC<br>(Evanston, Illinois)                    | Parametric materials design                                      |
| Macroscopic<br>process<br>modeling | ProCAST     | ESI Group<br>(Paris, France)                                       | Solidification processing                                        |
|                                    | DEFORM-HT   | Scientific Forming<br>Technologies Corporation<br>(Columbus, Ohio) | Deformation processing and heat transfer (finite-element method) |
| Microstructural simulation         | PrecipiCalc | QuesTek Innovations LLC<br>(Evanston, Illinois)                    | High-fidelity precipitation simulation                           |
|                                    | DICTRA      | ThermoCalc AB<br>(Stockholm, Sweden)                               | Multicomponent diffusion                                         |
|                                    | J MatPro    | Thermotech Ltd.<br>(Surrey, United Kingdom)                        | Phase relations and basic<br>microstructural modeling            |
| Thermodynamics                     | ThermoCalc  | ThermoCalc AB<br>(Stockholm, Sweden)                               | Multicomponent thermodynamics<br>and phase diagrams              |
|                                    | Pandat      | CompuTherm LLC<br>(Madison, Wisconsin)                             | Multicomponent thermodynamics<br>and phase diagrams              |
|                                    | FactSage    | Thermfact CRCT<br>(Montreal, Canada)                               | Multicomponent<br>thermodynamics and<br>phase diagrams           |

#### TABLE 3.1 Some Computational Materials Engineering Tools

# **ESTCP** AIM Demonstration

 Objective is to predict MIL-HBK 5 "A"- Allowables with only 3 heats available.







PERFORMAZCE

# **Critical Cooling Rate vs.** T<sub>rg</sub>



# **Twin-Roll Casting at IMI**



## **High Temperature Aluminum by Glass Devitrification**



### Bend test properties



700nm

SEM image of  $L1_2$  particle dispersion.



TEM Dark field image indicates  $L1_2$  particles  $\bar{d}$  ~25nm.



SAD pattern recorded along the [011] direction showing the matrix and the precipitates a cube/cube orientation relationship.

System chart



Systems Design Chart for Blast resistant Naval Steels



**Optimal Composition** 

## **Toughness – Strength Combination**



## BA160 Alloy

39 x 39 x 157 nm<sup>3</sup> LEAP Reconstruction







=MTL

# Scieneering Research Techmanities Education



Inspired by the HLB Process; courtesy Walter Herbst

## MSC 390 Materials Design

Spring 2005 Design Projects

- I. Blastalloy 120 NM (396/EDC) Client: ONR, DHS Advisors: Chris Kern, QuesTek Padmanava Sadhukhan
- II. Windmill Steel C64 Client: GE Power Generation Advisor: Yana Qian
- III. NanoDie M60N Client: ITW Medalist Advisor: Ben Tiemens

- IV.Terminator 4: BiomimeticSelf-Healing Mg CompositeClient: NASA, ARLAdvisor: Michele Manuel
- V. Stentalloy Z: HP-SMA (396) Client: Medtronic, Memry Advisor: Matt Bender
- VI. Noburnium 2: YAGalloy 1300 Client: AFOSR, NASA, RMC Advisor: Dave Bryan
- VII. Super Bubble (EDC) Client: QuesTek Advisor: Les Morgret



## **IN100 Alloy: Submicron Carbide Distribution**





Design Research Tools Consortium Quester

Contract No. N00014-05-C-0241



Shear Localization

Simulation

## Shear Localization Simulation with Real Particle Clusters

- Challenge Statement: Establish quantitative role of Particle dispersion nonuniformity in microvoid shear localization.
- **Approach:** Analyze carbide dispersion nonuniformity in IN100 tomographic dataset and simulate shear localization at potent clusters embedded in steel matrix.





**3D** Mesh

**Impact:** Shear localization is of central importance in both fracture toughness and ballistic plugging resistance. Incorporation of design concepts in prototype steels already demonstrates improved ballistic FSP V50 (ONR Mantech).



# Ferrium C67- Performance

## Surface Fatigue





- NASA Glenn
   Research Center
- Recirculating Spur Gear Fatigue Rig
- Set to test surface fatigue, 1.72 GPa Hertzian stress

Best performing set to date

# Overall Strategy for 3D Fatigue Modeling





# The New Metallurgy - Shifting the Core



Descriptive Science  $\longrightarrow$  Pr Exploration for Discovery  $\longrightarrow$  Pi

- Empirical Measurement
  - **Deterministic Science**
  - **Reductionist Analysis**
  - **Knowledge Generation**

- Predictive Science
- Pioneering by Design
- → Validated Simulation
- → Probabilistic Science
- → Systems Synthesis
- → Value Creation

# Our Vision: What an Engineer Should Be

## **Technical specialist**

- Gets the job done!
- Can understand and analyze the physical and mathematical underpinnings of his/her field
- Works effectively with both the abstract and the physical
- Works problems through to a complete and realistic solution

## Creator of value

- Identifies and solves real problems within a social and economic context
- Works well in cross-disciplinary teams
- Adaptive learner
- Communicates effectively
- Responsible decision-maker





Successful Prototype. Sample demonstrates 98% strength recovery.

#### Isothermal Section of Mg-Zn-Al Ternary System

0.9

0.8

#### Mg-Zn-Al Ternary System 338°C Zn 1.0 Mg<sub>2</sub>Zn<sub>11</sub> MgZn<sub>2</sub> MgZn Ternary Eutectic Ternary Eutectic Mg 2n Ternary Eutectic Computational Computational Thermodynamic Design Percent Liquid Versus Temperature of Mg-14wt%Zn-3wt%Al



Stereology through Image J software calculated the matrix contains 16.9%±4% eutectic as designed.

# Unmanned Aerial Vehicles (UAVs)

Size and Weight of UAVs





Survey of existing UAVs