
Edward DeMille Campbell
1863-1925

This annual lecture was inaugurated in 1926 
in memory of the outstanding scientific 
contributions to the metallurgical profession 
by a distinguished educator who was blind for 
all but two years of his professional life. 
Despite this handicap, he contributed 77 
papers to the scientific literature, the majority 
of which dealt with a correlation of the 
chemical constituents with the physical and 
mechanical properties of steels.  This lecture 
recognizes demonstrated ability in materials 
science and engineering.  Professor 
Campbell, Honorary Member of ASM 
International, was born in Detroit, Michigan in 
1863, and was educated at the University of 
Michigan.  After serving as a chemist in 
various iron companies, he became an 
Assistant Professor at the University of 
Michigan in 1890 where he lost his sight at 
the age of 28 in an explosion during a 
laboratory examination of steel.  For 20 years 
before his death in 1925, he was Head 
Professor of Chemistry and Metallurgy and 
Director of the Chemical Laboratory at the 
University of Michigan.
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Hierarchy of Design Models
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M2C Precipitation

M2C carbide precipitation behavior 
in AF1410 steel vs. tempering time 
at 510C following 1 hour solution 
treatment at 830C



Current sales Ferrium® C61

Ring and Pinion Camshafts



S53: Nanotechnology Now





Grain Boundary Embrittlement 
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Charge Density : Fe/Ti[C,N] Charge Density : Fe/Ti[C,N] 
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• Strong covalent feature

• Short bonding distance
Fe-C : 1.88 Å
Fe-N : 1.90 Å

(cf) Fe3C : 1.94 Å

• Opposite buckling
Fe/TiC : 0.07 Å
Fe/TiN : 0.07 Å
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• Same maximum charge density in the bond
Fe-C : 0.12 e/(a.u.)3 Fe-N : 0.12 e/(a.u.)3

(cf) 1 a.u.=0.529 Å



Interfacial Quantum Engineering
of Grain Refining Carbonitrides

MX/FeMX/Fe
Work of Separation (J/mWork of Separation (J/m22) ) 

V(C,N)
TiC/Fe VC/Fe MoC/Fe

3.89 3.70 3.46

TiN/Fe VN/Fe MoN/Fe

3.29 3.17 4.31

Ti(C,N) Mo(C,N)
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Materials Development Cycle
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AIM ARCHITECTURE 

KBE
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Analysis Components

Models provided by Pratt 
& Whitney, General 
Electric, Questek, and 
others. Integrated by 
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architecture via iSIGHT
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Java/HTML

Exploration 
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* Distributed Resource Management

Networking
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iSIGHT’s integration 
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Documentum



PrecipiCalc™ Timeline
Software/Hardware Improvement

1/02 6/02 1/03 6/03 1/04

hierarchical 
sequencing

24 hours* on 
Pentium III 

600MHz

Applications/Demonstrations 
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improved numerical 
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* single IN100 PWA1100 simulation



Basic PrecipiCalc Equations (2) —
Particle Growth

Thermodynamics
Diffusivity

Interfacial Property
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Ppc simu plots



Impact of DARPA AIM Initiative
• Material behavior intimately linked 

and particpiating in the design process
4 months to improved capability

Rim hole Bore

ANSYS
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processing
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Minidisk Microstructure Prediction with 
PrecipiCalc

Exp. PpC Exp. PpC Exp. PpC
24 23.5 23.1

25.2 25 25.7
1.23 1.18
1.27 1.2

Fraction 
(%) 32.4 35 34 34.6

109 132 120 103
129 157 135 114

146
18 19.7

20.8 21.8
21.4 20.7Tertiary γ’ Size (nm) 21.5 21.4

Secondary γ’
Size (nm) 107.9 84.2

23.3

Size (µm) 1.28 1.29 1.32 1.31
Primary γ’

Fraction 
(%) 22.6 23.5

Minidisk 
Comparison

Bore Rim Attachment



PrecipiCalc YS Model YS Distribution

Probabilistic Modeling of Manufacturing Variation:
PrecipiCalc™ Forecast of Minimum Design Properties
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ESTCP AIM Demonstration
• Objective is to 

predict MIL-HBK 5 
“A”- Allowables 
with only 3 heats 
available.
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Processing Structure Properties
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Critical Cooling Rate vs. Trg
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Processability Goal
for Fe-Based alloys

FeG-01
2000 at. PPM O

Inoue5 alloy
1040 at. PPM O

DarpaQ17
490 at. PPM O

QD
1700 at. PPM O

Pd-Ni-P (fluxed)
 Greer et.al.

Inoue5 alloy + Y
140 at. PPM O

DarpaQ21
140 at. PPM O

UW-02
730 at. PPM O

FeG-02
360 at. PPM O

Darva101
150 at. PPM O

DAR35



Twin-Roll Casting at IMI



High Temperature Aluminum by Glass Devitrification
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Bend test properties

SAD pattern recorded along the 
[011] direction showing the 
matrix and the precipitates a 
cube/cube orientation 
relationship.

TEM Dark field image 
indicates L12 particles d 
~25nm.

SEM image of L12 particle 
dispersion.

700nm



System chart

PROCESS STRUCTURE PROPERTIES
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Grain Boundary Chemistry
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Impurity Gettering: La,Zr
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Systems Design Chart for Blast resistant Naval Steels



Optimal Composition



Toughness Strength



157 nm 39 nm

BA160 Alloy
39 x 39 x 157 nm3 LEAP Reconstruction

Cu isosurfaces (Red)
C atoms (Black)



3-DAP



Idea_MTL

1. Scieneering Research
2. Techmanities Education



Design phases

IDEA 106

IDEA 306

IDEA 298 IDEA 398

IDEA 308

Design
Elective

Design
Elective

Dept. 
Capstone

Design
Elective

399 399 399

or

EDC

CONCEPTUAL
DESIGN

Needs discovery
Business planning
Concept generation

QFD
Prelim breadboard

Prelim vendor assess
Prelim specifications

EMBODIMENT
DESIGN

User Feedback
Refine Specification

Alpha prototype
Design review

Vendor selection

DETAIL
DESIGN

Working prototypes
User testing
Lab testing

Agency approval
Revisions

Vendor release

PRE-PRODUCTION

Tooling design
Tool revision

Pilot runs
Testing

Revision

Inspired by the HLB Process; courtesy Walter Herbst



MSC 390 Materials Design
Spring 2005

Design Projects

I. Blastalloy 120 NM (396/EDC)
Client: ONR, DHS
Advisors: Chris Kern, QuesTek
Padmanava Sadhukhan

IV. Terminator 4: Biomimetic
Self-Healing Mg Composite
Client: NASA, ARL 
Advisor: Michele Manuel

II. Windmill Steel C64
Client: GE Power Generation
Advisor: Yana Qian

V. Stentalloy Z: HP-SMA (396)
Client: Medtronic, Memry
Advisor: Matt Bender

III. NanoDie M60N
Client: ITW Medalist
Advisor: Ben Tiemens

VI. Noburnium 2: YAGalloy 1300
Client: AFOSR, NASA, RMC
Advisor: Dave Bryan

VII. Super Bubble (EDC)
Client: QuesTek
Advisor: Les Morgret
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IN100 Alloy: Submicron Carbide Distribution



Design Research Tools Consortium
Contract No. N00014-05-C-0241

Shear Localization Simulation with Real Particle Clusters

Challenge Statement: Establish quantitative role of 
Particle dispersion nonuniformity in microvoid shear 
localization.

Approach: Analyze carbide dispersion 
nonuniformity in IN100 tomographic 
dataset and simulate shear localization 
at potent clusters embedded in steel 
matrix.

Impact: Shear localization is of central 
importance in both fracture toughness and 

ballistic plugging resistance. Incorporation of 
design concepts in prototype steels already 

demonstrates improved ballistic FSP V50 
(ONR Mantech).IN100 Carbides

Identified 
Potent Cluster

Shear Localization 
Simulation

3D Mesh

D.M. Parks, MIT, B. Moran, W-K. Liu Northwestern University; H.-J., QuesTek
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Ferrium C67- Performance
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Suspended Test

Pyrowear 53

Ferrium C69

• NASA Glenn 
Research Center

• Recirculating Spur 
Gear Fatigue Rig

• Set to test surface 
fatigue, 1.72 GPa
Hertzian stress

Best performing 
set to date

Surface Fatigue



Overall Strategy for 3D Fatigue Modeling
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Design Integration

Qualification

Conceptual

Detail

Embodiment
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Model Alloys 
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The New Metallurgy
- Shifting the Core

Descriptive Science

Exploration for Discovery

Empirical Measurement

Deterministic Science

Reductionist Analysis

Knowledge Generation

Predictive Science

Pioneering by Design

Validated Simulation

Probabilistic Science

Systems Synthesis

Value Creation
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Our Vision:  What an Engineer 
Should Be

Technical specialist
• Gets the job done!
• Can understand and analyze the 

physical and mathematical 
underpinnings of his/her field

• Works effectively with both the 
abstract and the physical

• Works problems through to a 
complete and realistic solution

Creator of value
• Identifies and solves real problems 

within a social and economic 
context 

• Works well in cross-disciplinary 
teams

• Adaptive learner
• Communicates effectively
• Responsible decision-maker

DESIGN

Our vision



Systems Design Approach

Before

After
Successful Prototype.  Sample demonstrates 98% strength recovery.
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Mg2Zn11

MgZn2
Mg2Zn3

MgZnAlII
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338°C

Ternary Eutectic

Mg – 14 wt.% Zn – 3 wt%. Al

Percent Liquid Versus Temperature of Mg-14wt%Zn-3wt%Al
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Stereology through Image J software 
calculated the matrix contains  16.9%±4% 
eutectic as designed.

Cast Mg-based Matrix

Computational 
Thermodynamic Design

Isothermal Section of Mg-Zn-Al Ternary System

Tm=585°C

Healing Temperature



Unmanned Aerial Vehicles (UAVs)

Size and Weight of UAVs
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• Survey of existing UAVs

Global Hawk

DragonEye

Global Hawk

Pioneer

Dragon Eye
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