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Abstract 

Several experimental techniques are used for phase identification and microstructure 

characterization of austempered vermicular cast irons (XRD, SEM, TEM and 

Mössbauer spectroscopy). Acicular structures were found to be composed by ferrite and 

austenite with average sizes compatible with those reported for bainitic ferrite in steels 

and Austempered Ductile Iron. An assessment of the free energy change involved in the 

austenite→bainite transformation assuming a plate-like nucleation shape for bainite 

gave an average characteristic length close to the observed from statistical length 

distributions. The kinetics of the transformation was modelled in the Avrami 

framework; both the diffusion controlled and the diffusionless growth hypothesis were 

considered in order to elucidate the mechanism underlying the austempering phase 

transformation. Results indicated that diffusion of C is the responsible of the nucleation 

process of the bainite sheaves, that appear as a consequence of a localized displacive 

transformation when the C concentration is adequate, but further growth of the bainite 

plates is almost suppressed. 
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INTRODUCTION 

 

Cast irons contain higher C content than steels (more than 2 wt%), Si as a principal 

alloy component and other elements such as Mn that can be regulated to design a 

material with desirable mechanical properties. In particular, ductile or nodular cast iron 

contains trace amounts of magnesium which, by reacting with sulfur and oxygen in the 

molten iron, precipitates out carbon in the form of small spheres. These spheres improve 

the stiffness, strength, and shock resistance of ductile iron over gray iron. Accordingly, 

graphite vermicular morphology within cast irons is also obtained by addition of trace 

amounts of magnesium. Until recently, Cast irons with vermicular morphology, also 

referred to as Compacted Graphite (CG) Cast Irons have been extremely difficult to 

produce on a commercial scale because of process-control difficulties and the necessity 

of keeping alloy additions within very tight limits (if the Mg addition varied by as little 

as 0.005% results would be unsatisfactory). Nowadays, processing problems have been 

solved and CG cast irons are valuable because of their intermediate mechanical 

properties between gray and ductile iron, i.e an optimal combination of ductility and 

thermal conductivity (30-50 W/m.K), high thermal cyclic resistance and low weight that 

make CG cast irons specially useful for car parts fabrication 1,2. 

Austempering heat treatments are widely used to improve ductility because they allow 

to produce a higher austenite fraction after cooling the material to room temperature 3. 

In terms of properties, the Austempered Ductile Iron (ADI) matrix almost doubles the 

strength of conventional ductile iron while retaining its excellent toughness. 

Austempering does not produce the same type of structure in ductile iron as it does in 

steel because of the high carbon and silicon content of iron. The matrix structure of ADI 

as well as of austempered CG sets them apart from other cast irons, making them truly a 

separate class of engineering materials. Even though CG differs from ADI basically on 

the graphite morphology, it could be expected a close relation between CG and ADI 

microstructures, scarcely studied in the first case but extensively studied in the last one. 

The initial stage of austempering is the parent austenite transformation into ferrite plus 

high carbon austenite (γpa → αFe + γhc) at constant temperature, attaining a 

microstructure called bainite, i. e. fine laths of ferrite of approximately 0.2µm thick with 

interlath cementite of approximately 0.25µm 4. It is well known for steels that bainite is 

produced at austempering temperatures in the range 523K-723K. Moreover, in steels 
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with high enough Si content (~2wt%) carbide formation is inhibited because Si 

dissolves completely in ferrite and consequently austenite with high C content is 

expected to form in place of cementite 5. The microstructure is then called bainitic 

ferrite 6.  The residual austenite that has left after transformation to bainite, exhibits two 

basic morphologies, i.e. film austenite which is retained between the subunits within a 

given sheaf of bainite and “blocky austenite” which is bounded by different bainite 

sheaves 7. The distribution of carbon in those two forms of the residual austenite is not 

homogeneous after isothermal transformation to bainite. The austenite is enriched to a 

greater extent in the regions trapped between the platelets than in the blocky austenite 7. 

The carbon concentration in austenite affects its chemical and mechanical stability at 

room temperature and the volume percent of retained austenite is vital to ductility and 

thoughness 8.  

However, it must be noted that the microstructure obtained after austempering is not 

stable at room temperature, and thus the resulting material suffers an additional 

microstructural transformation during the final cooling. Thus, depending on the 

chemical composition, the material could be composed at room temperature of bainitic 

ferrite, retained austenite, graphite and even martensite. 

It’s important to notice that ADI mechanical properties are largely determined by its 

main constituents: bainitic ferrite and retained austenite 8. Thus, it is important to go 

deeper in the understanding of austenite → bainite transformation to quantify the phases 

responsible of the final mechanical properties. 

The transformation mechanism austenite→ bainite for cast irons is still under 

discussion and for CG cast irons was scarcely studied 9,10,11,12. While some authors 

suggested a diffusion controlled phase transformation 9,13,14,15,16 some others found that a 

displacive mechanism controls the transformation in steels 5,17.   In the last case, it is 

thought that bainite subunits grow without diffusion, but that any excess carbon in the 

ferrite is partitioned into the residual austenite soon after nucleation 8,18. Diffusion of 

interstitial carbon atoms would mostly operate during nucleation 19 redistributing carbon 

in a few milliseconds 9,10; the kinetics is said to be controlled by the successive 

nucleation of laths or plates6. The indications are that the time required to grow a 

subunit is small relative to that needed to nucleate successive subunits. The growth rate 

of individual subunits is known to be much faster than the lengthening rate for sheaves 
18 . Because growth occurs without diffusion, the transformation is said to be interface 

controlled.   
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On the other hand, according to the diffusive mechanism a short-range diffusion of the 

substitutional atoms is expected to occur at well-developed ledges in the austenite / 

ferrite interface 15,16.  It is also proposed that bainitic ferrite grows under full local 

equilibrium between ferrite and austenite what means that carbon content in ferrite 

would be prescribed by the α /α + γ  boundary in phase diagram 7,14.  In this case the 

transformation is said to be diffusion controlled. 

 

The subject of this work is to progress in the understanding of the austempering process 

in vermicular cast irons. In particular, the main target is to obtain evidence that allows 

us to distinguish between the two kinetic mechanisms – displacive/interface or diffusion 

controlled growth – that have been proposed. Being available in the literature 

contradictory experimental data and theoretical arguments supporting both descriptions, 

it is clear that a global approach is necessary. It is important to have in mind that the 

proposed mechanism has to be consistent with both the microscopic and the 

macroscopic experimental evidence. 

 

In this work, several microscopic experimental techniques were used for phase 

identification and microstructure characterization. Phases were quantified by X Ray 

Diffraction (XRD) patterns Rietveld analysis. Austenite fractions were determined by 

Transmission Mössbauer Spectroscopy (TMS) while Scanning Electron Microscopy 

(SEM) together with image analysis were used for acicular structures quantification. 

These structures were found to be composed by ferrite and austenite according to 

Transmission Electron Microscopy (TEM). 

 

Subsequent modelling of the transformation was performed. First, an assessment of the 

free energy change involved in the austenite→ bainite transformation was carried out 

assuming a plate bainite morphology. The surface free energy term was found to be  

negligible compared with the strain term and the most favourable plate length was of 

the order of the experimentally observed. Next, the kinetics of the transformation was 

modeled in the Avrami framework and compared to macroscopic experimental data. 

Both the diffusion controlled and the diffusionless growth hypotheses were considered 

in order to elucidate the mechanism underlying the austempering phase transformation.  
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Complementary experimental techniques, numerical simulations, image analysis, size 

distribution measurements and theoretical calculations are combined in this work for the 

first time to characterize vermicular cast irons microstructure. This combination of 

different approaches allows us to give a better description of the mechanisms that drive 

austenite→ bainite phase transformation which was never studied in the particular case 

of vermicular graphite morphology. Comparison between modelling and the available 

experimental data supports the hypothesis that the transformation is of displacive type 

in the analyzed material.  

 

EXPERIMENTAL 

Samples were prepared following the ASTMA-395 standard in a medium frequency 

furnace as quoted in references10-12. Sample composition was determined using 

chemical methods (Table 1). The heat treatment consisted of 30min at 1173 K and then 

quenching in a salt bath at 648 K for times between 1 min and 10 min. Finally, sample 

was air cooled down to room temperature (Figure 1).  
Table 1 Chemical composition in wt.% of the alloyed compacted graphite cast iron. 

C Si Mn Cu P S Fe 

3.52 2.10 0.11 0.03 0.01 0.03 94.2

 

 
Figure 1 Samples heat treatment. Italics will be used as phases nomenclature in the modelling 
section: γpa ( ParentAustenite ), γhc (High Carbon Thermal Austenite), α (Ferrite), γrt (Retained 
Austenite at Room Temperature), α’ (Martensite). 
 

Samples thicknesses were reduced to 70µm by conventional grinding techniques using 

diamond paste for posterior analysis by TMS10-12.  
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In order to characterize the austempering microstructure by SEM, samples were etched 

with Nital 2% vol. For the case of TEM measurements, only the sample austempered 

for 2min was prepared using ion milling with two argon-ion guns. 

 

Mössbauer spectra were taken in transmission geometry and spectrometer settings are 

described elsewhere10-12.  

 

X Ray diffraction patterns of a set of samples austemperized at a slightly different 

temperature (623K), prepared exactly in the same way, were taken in Bragg-Brentano 

geometry with a step mode collection as described in a previous work20. All 

measurements were done at room temperature in the angular range (40º-90º) with 

10s/step. The Rietveld method was applied using the Full Prof program21 and the fits 

were performed using austenite (Fm3m), ferrite (Im3m) and martensite (I4/mmm). To 

detect carbon graphite all samples were quickly scanned in a broader angular range 

(25º-125º).  Graphite (P63mc) was added only for the 10min austempered sample 

Rietveld analysis. Goodness Rietveld fitting parameters were Rwp/Rexp =2, and 5% for 

each phase.  

 

Quantification of structures detected by SEM was made with standard image processing 

software.  

 

RESULTS 

 

According to SEM images (Figure 2), three different regions can be recognized, i.e. 

dark vermicular particles, presumably carbon graphite, grey acicular structures and a 

light zone comprising the rest of the image. After 10 minutes of austempering treatment 

the quantity of acicular structures increases (Figure 2 b). 
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Figure 2 SEM images after cooling to room temperature a sample austempered at 648K during a) 1 
min b) 10 min. 
 

For the case of steels, specially when the alloy concentration is low, an expression was 

reported to calculate the initial temperature of martensitic transformation (Ms )22: 

)((wt%Mn) - (wt%C)- (K)M s 133474834 ××=  

In our case, the matrix carbon content while austenitizing can be estimated according to 

the expression 23: 

Si)(wt%.Mn)(wt%.T.T   . . - C γγ
-

γ ×−×+××+××+= − 1100060106111033504350 2630  

where C0
γ is the austenite carbon content in wt% at the austenitizing temperature 

(1173K) and Tγ is the austenitizing temperature in celsius degrees (900ºC). Thus 

according to this expression and samples composition we get C0
γ= 0.94 wt%C. 

 

Replacing C0
γ= 0.94 wt%C in equation (1) Ms(K)=385K, well above room temperature. 

Even though this equation was proved to be useful for steels, we can consider the 

obtained value Ms as an indicator of the posible existence of martensite at room 

temperature in our samples. In other words, martensite could be stable at room 
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temperature if its carbon content is superior to 1,5 wt%C, which could be clearly the 

case in the samples analyzed here. 

 

Those hypothesis were verified by XRD patterns where ferrite, austenite, martensite and 

carbon graphite were present in all samples (Figure 3). 

 

 
Figure 3 Room temperature X ray diffraction patterns corresponding to samples austempered at 
623K for 1minute and 10 minutes. The lines under the spectra correspond to the theoretical angles 
where, from top to bottom, ferrite, austenite, martensite and carbon graphite peaks appear. 
 

The total austenite fraction quantified by XRD and TMS is shown in Figure 4. Lattice 

constants were determined by the Rietveld method (aα=2,891 Å, aγ=3,6549 Å). The 

agreement is excellent even tough, as previously stated, XRD patterns were taken over a 

set of samples austemperized at a slightly different temperature (623K).  It is important 

to note that TMS did not allow us to distinguish ferrite from martensite, because Fe 

local environments in martensite are similar to Fe sourroudings in ferrite24. Hence only 

austenite and ferrite plus martensite fraction was accurately quantified using TMS.  
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Figure 4 Austenite fraction quantified by Ritveld analisys of XRD diffraction patterns for samples 
austempered at 623K (squares) and by TMS over samples austempered at 648K (circles) as a 
function of austempering time. 
 

Quantification of acicular structures was performed through image analysis of SEM 

pictures, and the results are shown in Figure 5 as a function of the austempering time, as 

well as the amount of ferrite plus austenite assessed by XRD.  

 
Figure 5 Plot of several microstructural variables vs. austempering time for samples austempered 
at 648K. Surface fraction of acicular structures determined from SEM images (Triangles), fraction 
of ferrite (Squares) and fraction of ferrite + austenite (Circles), obtained by XRD for samples 
austempered at 623K. 
 

According to Figure 5 the surface fraction of acicular structures (which is equivalent to 

the volume fraction for a random distribution of particles25, falls between the ferrite and 

the ferrite plus austenite fractions after the first minute of austempering time. Taking 

into account some reported results for Austempered Ductile Iron (ADI)26, austempering 

microstructure could be composed by ferrite laths with thin interlath films of austenite, 
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i. e. bainite.  The bainitic transformation starts at a threshold temperature Bs that for the 

case of steels has been empirically calculated taking into account the alloy 

composition22: 

(wt%Mo)(wt%Cr)- (wt%Ni)-  (wt%Mn)-  (wt%C)- - (K) Bs ×××××= 837037902701103
 

Replacing C0
γ = 0.94 wt%C and alloy composition (Table 1) in Bs equation we obtained 

Bs = 825K which indicates that bainite could be expected in the samples analyzed here.  

 

To check the presence of bainite, transmission electron microscopy (TEM) of one 

sample austempered for 2 minutes was performed. Electron diffraction patterns were 

obtained in several regions of the sample and the cell parameters for the ferrite and the 

austenite were calculated (aα = 2.892 ± 0.014 Å, aγ = 3.654 ± 0.009 Å), in close 

agreement with the XRD results. These parameters are in accordance with the JCPDS 

files number 06-0696 for ferrite and 31-0619 for austenite, with relative errors of 0.9% 

and 0.2% respectively. The electron diffraction pattern confirms the presence of bainitic 

ferrite, i.e. austenite plus ferrite inside the acicular structures (Figure 6 and Figure 7).  

The size of the bainite sheave determined from TEM images is 4 µm long and 0.5 µm 

width, which is of the same order of magnitude than the reported for ADI and steels 

bainite sheaves 4, 5.  

 
Figure 6 TEM image of an acicular structure. 
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Figure 7 (a) Electron diffraction pattern of a region in Figure 6. (b) Reciprocal space representation 
of (a). 
 

Thus, the acicular structures observed by SEM are identified as bainite sheaves, the 2-

dimensional cut of the 3-dimension bainite plates. 

As the ferrite plus austenite fraction obtained by XRD and shown in Figure 5 is greater 

than the fraction of bainitic acicular structures, that contain ferrite and austenite, it can 

be concluded that some austenite is stabilized during the final air cooling process and 

hence appear as retained austenite at room temperature. This result is consistent with 

reported observations for high silicon steels where residual austenite after 

transformation to bainite exhibits two basic morphologies, i.e. film austenite which is 

retained between the subunits within a given sheaf and blocky austenite which is 

bounded by different bainite sheaves 7. Moreover, recent observations in-situ during 

austempering showed carbon-rich and carbon-poor regions in austenite 27. Presumably 

austenite is enriched to a greater extent in the regions trapped between the platelets than 

in the blocky austenite 7.  
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 Statistical distributions of the bainite sheave lengths are shown in Figure 8 for different 

austempering times. Statistics was made over approximately 1000 sheaves for each 

austempering time from SEM micrographs. 

 

 
Figure 8 Statistical distribution of bainite sheave lengths for samples austempered 1, 2, 4 minutes. 
 

Summarizing, the three regions identified in SEM images (Figure 2) are characterized 

as bainite (grey acicular structures), austenite plus martensite (the light grey 

background) and carbon graphite (vermicular black regions). Statistical length 

measurements shown in Figure 8 indicate that the length moda doesn't change with 

austempering time taking into account standard deviation, contrary to other authors 

conclusions over similar samples 9. The fact that neither the shape nor the statistical 

moda of lengths distributions change with austempering time while the total number of 

sheaves increases, could indicate that length growth of plates is extremely slower than 

nucleation velocity. This result agrees with a recent in-situ observation during 

isothermal holding of high silicon steels, according to which bainitic 

widening/thickening and lengthening are formed by a shear mechanism and carbon 

diffusion appears to play a significant role previously to nucleation of the Bainite 

sheaves but not during its growth 28.  
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Free energy assessment 

 

The free energy difference involved in the formation of a bainite nucleus of a given size 

within an austenite matrix can be written as 29:  

 

 3
2

nση∆gn)gg(n∆G s
γb ++−=   (2) 

accounting for the volume, strain and surface free energy contributions. Here, gb  and g γ 

are the free energy per atom in the bainite and austenite phases respectively, n is the 

number of atoms in the nucleus of bainite,  ∆gs is the elastic energy per atom, η is a 

shape factor and σ  the interfacial free energy. 

 

In the present case the free energy difference between bainite and austenite at 500ºC 

could be approximated from the steel case with a close chemical composition30 ∆G0
m= 

(gb - gγ) ≈ -996 J/mol .  

 

Taking into account the diffraction constants determined by XRD, the number of atoms 

per unit volume in a nucleus of ferrite as well as of austenite were approximated as: vα= 

8,06 Å3at-1 and vγ=6,10 Å3at-1respectively; where the austenite phase was considered to 

have 2wt% of carbon. In a rough approximation, the number of atoms per unit volume 

in bainite was calculated as the average between vα and vγ, i. e. vb= 7,08 Å3at-1. 

Hence the first term in equation (2) reads: 

  

)(1032,1)( 2
3

9)1( yR
m
JggnG b

µ
∆ γ −×−=−=  

Moreover, the elastic energy per atom can be written as21: 

 

( )















 −
=∆

R
yE

v
vvg b

b

s

γ
γµ

3
2  

where µγ is the shear modulus of the austenite, v the volume per atom and E is a shape 

function. The shear modulus of austenite was taken as µγ = 7x1010 Nm-2  31. 
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Specifically, for a disk shape (y/R << 1) the E function can be estimated as29: 

  

R
y

R
yE π

4
3

≈





  

where y  becomes the semi-thickness of the disc and R is its radius. 

 

The second term in equation (2) was then computed as:  
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According to29 the shape factor η of an ellipsoid of revolution of semi-axes R, R and y 

can be written as:  

 



























−−

−+

−
+






=

22

22

222

23
2

11

11
ln

1
2

4
3

Ry

Ry

RyR
y

R
yvbπη  

 

Finally with an α /γ  interface energy per unit area σ α /γ = 0,2 Jm-2    32, the third term in 

the equation (2) was approximated as: 
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The most favorable nucleation path will use the shape which gives a saddle point on the 

total free energy difference ∆G. Assuming average ellipsoid semiaxis value of 

y=0,25µm (as observed by TEM) we obtained the free energy graph shown in Figure 9 

where the saddle point match an average plate lenght of 8µm, which is of the same 

order than the extracted by TEM. 

Moreover, assuming average ellipsoids semiaxis values y=0,25µm and R=2µm and 

replacing in previous equations we get ∆G (1) = 1,32 x10-9 J, ∆G (2) = 6,26 x10-9 J, ∆G (3) 

= 6,26 x10-13 J.  
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Even though this is an approximated calculus, the order of magnitude of the radius is 

close to the experimentally found by TEM and the surface free energy term results 

negligible compared with the others two, .supporting the assumption of plate formation.  

 

 
Figure 9 Free energy plot of the transformation austenite → bainite for vermicular cast iron with 
chemical composition listed in Table 1, assuming a plate bainite morphology. The saddle point 
matches an average plate lenght of approximately 8µm. 
 
 

Modelling 

 

The purpose of this section is to integrate all the collected information into a single 

description to distinguish between the two growth mechanisms proposed in the 

literature. 

 

As a first assumption, we will assume that at the austenitizing temperature the samples 

are formed by a homogeneous matrix composed of austenite with carbon graphite 

inclusions. Being clearly separable inclusions, we will assume that carbon graphite has 

no influence in the austempering kinetics. Thus, at the austenizing temperature there is a 

single austenitic phase in equilibrium, and its volume fraction will be denoted by xγpa 

(parent austenite), so initially xγ pa(0) =1. 

 

After quenching down to the austempering temperature, the austempering phase 

transformation austenite → bainite takes place. The xγpa volume fraction decreases as 

the austempering time increases, an so a volume fraction (1- xγpa) proceeds through the  
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austenite → bainite transformation. We will assume that during the austempering 

process a fraction f of the austenite transforms into ferrite and a fraction (1-f) transforms 

into high carbon, stable austenite (see Figure 1). Thus,  

( ) ( )[ ]txftx paγα −= 1  

( ) [ ] ( )[ ]txftx pahc γγ −−= 11  

where xα and xγhc are the ferrite and stable austenite volume fraction respectively, both 

phases composing bainite microstructure. 

 

The evolution of phases with austempering time will be analysed in the frame of 

Avrami nucleation and growth theory29. In this description, the remaining xγpa  volume 

fraction is 

( ) ( )tx
pa etx −=γ  

 

being x(t) the extended volume of the α plus γhc precipitates at time t.  

 

After the austempering time ta, the sample is cooled down to room temperature. The 

parent austenite (xγpa) becomes partially unstable, and we will assume that a fraction g 

transforms into martensite while the remaining fraction (1-g) becomes retained austenite 

at room temperature (see Figure 1). The corresponding relations are 

( )apa txgx γα ='  

[ ] ( )apart txgx γγ −= 1  

where α’ is the martensite volume fraction and γrt is the retained austenite volume 

fraction that should be homogeneously distributed along the matrix. 

According to this model the stable phases at room temperature are martensite (of 

volume fraction xα’ ), bainite (of volume fraction xα+ xγhc(ta)) and austenite (of volume 

fraction xγrt ). Graphite fraction will be considered constant in time. 

 

The actual behavior of these phases is defined by the chosen nucleation and growth 

model of the bainite phase. We will consider the two models proposed in the literature. 

Bainite plates will be modelled as ellipsoids of revolution, of axes a and b (revolution 

axis). According to microscopy observation and the free energy assessment of the 

previous section, critical values a0 = 0.5 µm and b0 = 4 µm are assumed. 
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Difussion controlled growth 

 

Here we will consider that the growth of the bainite phase is controlled by the diffusion 

of C in the austenite phase. It is possible to considered that self-similar elliptic 

precipitates of axes a and b grow by diffusion. In a rough approximation:  

 

( ) Dtata 2
0 +=  

( ) t
a
bDbtb

0

02
0 +=  

where D is the diffusion coefficient of C in austenite, that was determined to be 

600µm2min-1  33. Denoting by I the nucleation frequency, we obtain: 

 

∫ 







−+−+=

t

0 0

02
0

2
03

4 dττ)(t
a
bDbτ)D(taπx(t) I  

 

Thus, the parameters to be determined in this model are the nucleation frequency I and 

the fractions f and g. The best fit parameters to the experimental data are given in Table 

2 and the evolution of the different phases is shown in Figure 10. 

 
 

Figure 10 Kinetics of the different phases assuming diffusion controlled growth (lines: − martensite, 
− · − austenite, − − ferrite, ―  ― ferrite plus martensite and ········ bainite) compared to 
experimental data:  austenite by XRD (×), ferrite by XRD (○), martenisite by XRD (□), ferrite plus 
martensite (▲) and austenite (∆) by Mössbauer spectroscopy and bainite by SEM (+).  
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Table 2 Best fit parameters obtained in the kinetics modelling. 
 f g I / µm-3min-1 G / µm min-1 

Diffusion controlled growth 0.65 0.85 10-5 - 

Interface controlled growth 0.65 0.85 0.0085 0.01 

 

 

Interface controlled growth 

 

We assume, as before, a growth rate in the ellipsoid axes a and b that maintains the self-

similarity, i.e. the a/b quotient is constant through the time. We propose an Avrami-type 

kinetics with nucleation rate I and growth rate G constants in time. The expression can 

be written as:  

 

)(
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4))())(((
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4)( 432
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2
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where Gb=(b0/a0)Ga, Ga≡G and: 
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Thus, this model is dependent on four parameters (G, I, f and g). The best fit parameters 

are given in Table 2, and the kinetics evolution of the different phases is shown in 

Figure11. 
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Figure 11 Kinetics obtained in the interface controlled growth model (lines: − martensite, − · − 
austenite, − − ferrite, ―  ― ferrite plus martensite and ········ bainite) compared to experimental 
data:  austenite by XRD (×), ferrite by XRD (○), martenisite by XRD (□), ferrite plus martensite 
(▲) and austenite (∆) by Mössbauer spectroscopy and bainite by SEM (+). 
 

DISCUSSION AND CONCLUSIONS 

 

Both growth models give similar values of the fractions f and g that, on the other hand, 

cannot be determined experimentally. Thus, the validity of one model or the other must 

essentially rely on the plausibility of the values of the nucleation rate. SEM pictures for 

1min austempering time were analyzed in order to count the number of acicular 

structures; from that measurement, and assuming an uniform distribution of particles 

within the sample volume, we can estimate the number of acicular structures as 

approximately 0.01µm-3min-1 which is the same order of magnitude of the nucleation 

frequency obtained in the best fit of the interface controlled growth model (Table 2). 

The observation of Figure10 and Figure11 seems also to indicate that the interface 

controlled growth kinetics is closer to the experimentally determined values. A deeper 

analysis of this kinetics shows that the value of the growth rate G is actually very low, 

which means that there is not significant growth of the bainite plates after nucleation. 

All this set of data is coherent with the displacive model proposed for the austenite 

→bainite transformation in steels5. 

 

Concerning to the sheave length distribution shown in Figure 8, in all cases a distinctive 

peak appears around 2 µm, slightly below the value of 4 µm used in the model. 

However, it must be considered that the two dimensional cut of the three dimensional 
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bainite plates will always give a maximum at a value lower than the true radius of the 

plates due to stereologic reasons25. In these distributions a tail is also observed for 

lengths larger than that of a single plate, which is in well agreement with the fact 

pointed out by several authors that new bainite plates nucleate often close to the ends of 

existing plates5,28. 

 

To summarize, the austempering kinetics of a vermicular cast iron was analyzed by X-

Ray Diffraction, Transmission Mössbauer Spectroscopy, Scanning and Transmission 

Electron Microscopy, and Image processing. Although every of the techniques gives a 

partial view of the transformation, the compound analysis allowed to offer a complete 

picture of the kinetics. The transformation was modeled in the framework of the Avrami 

kinetics, assuming that the austempering process produces the transformation of 

austenite in bainite and the final cooling down to room temperature induces the partial 

decomposition of the untransformed austenite (unstable at room temperature) in 

martensite and retained austenite (stable at room temperature). Two different growth 

mechanisms, namely diffusion controlled and interface controlled, were considered to 

model the transformation, and comparison with the collected experimental data shows a 

much better agreement with the interface controlled growth. Thus, it appears that the 

mechanism of the austempering process is very close to the displacive mechanism of the 

formation of bainite proposed by some authors5,6,28,34, in which the diffusion of C is the 

responsible of the nucleation process of the bainite sheaves, that appear as a 

consequence of a localized displacive transformation when the C concentration is 

adequate, but further growth of the bainite plates is almost suppressed. 
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